
1752	 volume 117 | number 11 | November 2009  •  Environmental Health Perspectives

Research

Air Pollution, Physical Activity, 
and Neighborhood Design

The built environment affects public health in 
many ways (Frumkin et al. 2004), depending 
on the interplay between factors such as com-
munity design, travel patterns, physical activ-
ity, transportation safety, and air and water 
pollution. This study investigated interactions 
between a) walkability, a measure of how con-
ducive the built environment is to walking 
and that predicts physical activity and active 
transportation (Frank et al. 2005; Owen et al. 
2004; Sallis et al. 2004), and b) exposure to 
outdoor air pollution, which is associated with 
a wide array of negative health impacts.

Physical inactivity and outdoor urban air 
pollution are two of the top 15 global causes 
of health impairment (Ezzati et al. 2002; Hill 
et al. 2003). Ozone (O3) (Bell et al. 2006; 
Jerrett et al. 2009), vehicle exhaust (Brauer 
et al. 2008; Kim et al. 2004), and within-city 
contrasts in other air pollutants for which traf-
fic is a major contributor (Brunekreef and 
Holgate 2002; Mokdad et al. 2004; Vedal 
et al. 2003) are associated with many adverse 
health outcomes, including cardiopulmo-
nary mortality (Beelen et al. 2008; Nafstad 
et al. 2004; Pope et al. 2002), atherosclerosis 
(Hoffmann et al. 2007; Künzli et al. 2005), 
impaired lung development in children 
(Gauderman et al. 2007), asthma and asthma 

exacerbations (Brauer et al. 2007; Gauderman 
et al. 2005; Trasande and Thurston 2005), 
reduced lung function (Brunekreef et  al. 
1997; Kulkarni et al. 2006), cardiac arrhyth-
mia (Peters et  al. 2000), and preterm and 
low-birth-weight babies (Brauer et al. 2008; 
Parker et al. 2005; Šrám et al. 2005; Wilhelm 
and Ritz 2003). Inactivity and insufficient 
activity (< 2.5 hr/week of moderate-intensity 
activity, or < 4,000 kJ/week) have been caus-
ally linked with heart disease, several cancers, 
diabetes, and other adverse health impacts 
and are associated with high body mass index 
(BMI; overweight and obesity), which can lead 
to additional effects on health (Ezzati et al. 
2002). In polluted U.S. cities, the mortality 
risk from particulate air pollution is compa-
rable to that for obesity (grade 1 or 2), but less 
than that for extreme obesity (grade 3) (Pope 
et  al. 2002). Reducing the average energy 
imbalance (caloric intake minus metabolic 
activity) among persons in the United States 
by approximately 100–165 kcal/day would 
prevent average weight gain (~ 1 kg/year) (Hill 
et al. 2003; Wang et al. 2006), which suggests 
that moderate daily exercise—as little as two 
or three 10-min walking trips, such as to a bus 
stop or grocery store—could provide major 
public health benefits.

“Walkability” of a neighborhood meas
ures whether community design encour-
ages or inhibits walking (Frank and Engelke 

2001; Frank et al. 2004; Gordon-Larsen et al. 
2006; Handy et al. 2002; Li et al. 2005). For 
example, lack of a sidewalk can make walking 
unsafe, and a disconnected street network can 
discourage walking. Conversely, having retail 
stores close to where people live and provid-
ing connected streets increases the likelihood 
that a person will incorporate walking into 
daily routines (Frank et al. 2005; Moudon 
et al. 2007).

Neighborhood design—for example, the 
layout of buildings, land uses, and streets—can 
influence walking and other exercise activities, 
BMI, and overall health ratings, as well as air 
pollution emissions and exposures [Cervero 
and Duncan 2003; Ewing et al. 2003; Frank 
et al. 2004, 2005; Kelly-Schwartz et al. 2004; 
Owen et al. 2004; Smith et al. 2008; U.S. 
Environmental Protection Agency (EPA) 
1999] (Table 1). The American Academy of 
Pediatrics (Committee on Environmental 
Health 2004), the U.S. Centers for Disease 
Control (Kochtitzky et al. 2006; Martin and 
Carlson 2005), the World Health Organization 
(Edwards and Tsouros 2006; WHO 2006), 
and others (Dearry 2004; Jackson and 
Kochtitzky 2001) have called for research on 
how city design affects walking and other exer-
cise and people’s exposure to air pollution. An 
important goal is using neighborhood design 
as a tool for creating cleaner, healthier urban 
environments.

Our analyses identify neighborhoods that 
do especially well (or poorly) for both issues 
(walkability, air pollution). To our knowledge, 
this study is the first to compare quantitative 
estimates for these two neighborhood-scale 
environmental health attributes. Our find-
ings demonstrate important health impacts of 
spatial exposure to the built environment.

Materials and Methods
We investigated air pollution concentrations 
and walkability in Metro Vancouver, which 
is a coastal urban region of 2.2 million people 
in southwest British Columbia, Canada (aver-
age density, 760 people/km2). Pollution and 
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walkability were estimated using geographic 
information system (GIS) mapping software 
(ArcGIS; ESRI, Redlands, CA, USA). To our 
knowledge, our study is the first to quantita-
tively assess the spatial intersection of walk-
ability and air pollution (Frank and Engelke 
2005).

Vancouver, which sits prominently at the 
top of international rankings of livable cit-
ies (The Economist 2009), is a useful study 
region because of the wide range in walkabil-
ity levels. It is often cited as a well-planned 
city with walkable neighborhoods and 
comparatively clean air. However, the sub-
urbs in Vancouver are as unwalkable as the 
suburbs found in typical sprawling regions 
(Montgomery 2006).

Concentrations of nitric oxide (NO), 
which is an indicator of traffic exhaust and of 
O3, a regional, secondary pollutant, were esti-
mated for 49,702 (89%) of the 56,099 postal 
codes in Metro Vancouver (Marshall et al. 
2008). Walkability estimates were then gener-
ated for those postal codes. Postal codes in this 
region are typically one city block-face (one 
side of a block) or smaller (Metro Vancouver’s 
average postal code size is 39 people, or 0.05 
km2). Because postal codes have roughly 
equal populations, analyses by postal code are 
roughly population-weighted analyses. The 
Canadian census (Statistics Canada 2004) pro-
vides a 1-to-5 low-to-high measure of afflu-
ence [quintile of annual income per person 
equivalent (QAIPPE)] for each postal code.

Walkability. Walkability captures the 
proximity between functionally complemen-
tary land uses (live, work, play) and the degree 
of route directness or connectivity between 
destinations (Forsyth and Southworth 2008; 
Moudon et al. 2006). Our walkability esti-
mates incorporated four parameters (Frank 
et al. 2009; Leslie et al. 2007): a) net res-
idential density (D), the number of dwell-
ing units per square kilometer of residential 
land; b) intersection density (I), the number 
of intersections per square kilometer; c) retail 
floor area ratio (R), the retail shop floor-area 
divided by retail land area; and d) land-use 
mix (M), the evenness (i.e., equality) of floor 
space among categories of land use. We cal-
culated each parameter for a 1-km network 
buffer around each postal code (Frank et al. 
2009) and then a relative walkability score 
(W; unitless) for that postal code as

      W = ZD + 2 × ZI + ZR + ZM,� [1]

where ZD, ZI, ZR, and ZM are statistical 
Z-scores [unitless (mean ≈ 0; SD ≈ 1)] for D, 
I, R, and M, respectively. Values for I are large 
where streets are well connected (e.g., a grid) 
and small where streets are poorly connected 
(e.g., cul-de-sacs). Values for R are large for 
multistoried retail buildings with little surface 

parking and small for one-story retail build-
ings with large parking lots (“big-box retail”). 
Values for M are large where land uses such 
as residential, retail, office, and entertainment 
are highly mixed, and small where they are 
spatially homogeneous. Values for M are calcu-
lated based on building area within 27 land-use 
categories. The data used in Equation 1 were 
derived from three sources: a) locations for 
postal code centroids (Postal Code Conversion 
File, version 4D) and demographic infor-
mation such as QAIPPE are from the 2001 
Canadian Census (Statistics Canada 2004), 
b) street network data are from the 2001 
CanMap (DMTI Spatial, Markham, Ontario, 
Canada), and c) land-use data are from the 
2001 British Columbia Property Assessment 
(BC Assessment, Victoria, British Columbia, 
Canada) (Setton et al. 2005).

Parameters in Equation 1 were selected 
because they have been found in many studies 
to be predictors of travel patterns and of walk-
ing in particular (Engelke et al. 2003; Ewing 
et al. 2003; Frank et al. 2005, 2006; Lee and 
Moudon 2006). For example, in Seattle, a 5% 
increase in the Equation 1 walkability score is 
associated with a 33% increase in the propor-
tion of people who reported that they walked 
during a 2-day period (Frank et al. 2006).

Air pollution. For each postal code, we 
evaluated the annual average concentrations 
of two pollutants: NO concentrations were 
estimated using land-use regression (LUR) 
(Henderson et al. 2007), and O3 concentra-
tions were estimated using spatial interpolation 
of summer-only (May–September) monitoring 

data (Vedal et  al. 2003). We employed 
inverse-distance weighted average of the 
three nearest monitors (Marshall et al. 2008); 
among the postal codes, the mean distance 
to the nearest O3 monitor is 3.7 km. These 
two approaches—LUR for NO and interpola-
tion for O3—were selected because extant esti-
mates are available for Metro Vancouver. In 
addition, the approaches match well with each 
pollutant’s spatial variability: generally, NO 
concentrations vary over short spatial scales 
(roughly one or a few city blocks), whereas 
O3 varies over long spatial scales (suburbs vs. 
urban core) (Marshall et al. 2008).

NO was chosen because it is a primary 
vehicle-related pollutant and therefore serves 
as a marker for freshly emitted traffic exhaust, 
including both gasoline and diesel vehicles. O3 
offers a useful comparison with NO because 
it is a secondary pollutant (i.e., formed in the 
atmosphere rather than emitted directly), so 
high concentrations tend to occur regionally 
downwind of the highest density areas (e.g., 
in suburbs). High O3 concentrations occur 
in summer.

We have previously described and validated 
the LUR model (Henderson et al. 2007) and 
compared it against interpolation and mech-
anistic air dispersion models (Marshall et al. 
2008). LUR is a hybrid empirical-statistical 
approach that combines concentration meas
urements with GIS maps, thereby offering a 
high degree of spatial resolution. Briefly, 116 
passive NO samplers were deployed for two 
14-day periods at 116 sites in the study area. 
Mean concentrations during these two periods 

Table 1. Sample of recent findings relating urban design, environment, and health in the United States.
Study location(s) Findings
San Diego, CA; Montgomery County, MD; 

West Palm Beach, FL
Vehicle kilometers traveled (VKT) is 40–50% lower, and emissions 

of carbon dioxide and of NOx are ~50% lower for new residences 
in already built-up areas (“infill development”) than for “green-field” 
development (suburbs/exurbs) (U.S. EPA 1999)

San Francisco, CA Factors observed to induce nonmotorized travel include well-
connected streets, small city blocks, mixed land uses, and close 
proximity to retail activities (Cervero and Duncan 2003)

448 counties and 83 metropolitan areas Sprawl reduces walking levels and may increase BMI (Ewing et al. 
2003)

Atlanta, GA Likelihood of obesity decreases 5% for each additional kilometer 
walked per day, increases 6% for each additional hour spent in a 
car per day, decreases 12% for a 1-quartile increase in land-use 
mixing (Frank et al. 2004) 

29 metropolitan areas Health ratings are high in locations with high accessibility and with 
gridded street networks but are low in high-density areas. (Health 
ratings are higher in high-density areas with accessible gridded 
streets than in low-density areas with nonaccessible nongridded 
streets) (Kelly-Schwartz et al. 2004)

Atlanta, GA Land-use mixing, residential density, and intersection density are 
correlated with minutes of moderate physical activity per day. 
Based on objectively measured (accelerometer-based) activity, 
individuals were 2.4 times more likely to meet recommended 
activity levels (30 min/day) in the highest walkability quartile than 
in the lowest (Frank et al. 2005)

Salt Lake City, UT Risk of obesity is lower among persons living in older and in more 
pedestrian-friendly neighborhoods. Differences in body weight 
between most- and least-walkable neighborhoods was ~ 8 pounds 
(Smith et al. 2008)
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were successfully validated against annual aver-
ages from regulatory monitoring network data 
(Henderson et al. 2007; Marshall et al. 2008). 
For each measurement site, 55 variables were 
generated in GIS. Linear regression models of 
NO were built with the most predictive covari-
ates. The model has an R2 of 0.62 and includes 
as covariates the number of major roads within 
100- and 1,000-m radii circular buffers of the 
measurement sites, the number of secondary 
roads within a 100-m buffer, the population 
density within a 2,500-m radius, and elevation. 
As described previously (Marshall et al. 2008), 
model–measurement comparisons for NO at 
monitoring station locations indicate reason-
able to good agreement (mean bias, absolute 
bias, and error, 29%, 42%, and 1.6 µg/m3, 
respectively; model–measurement correlation, 
0.7). Bias and absolute bias levels meet the goals 
(30% and 50%, respectively) and criteria (60% 
and 75%, respectively) suggested by Boylan and 
Russell (2006) for particulate matter concentra-
tion, but they do not meet the regulatory guid-
ance (15% and 35%, respectively) for peak O3 
concentrations (U.S. EPA 1991).

Results
In Figure 1 and Table 2, we present walk-
ability levels and air pollution concentrations. 
Mean values are 0.33 for walkability (unitless), 

32.1 for NO (micrograms per cubic meter), 
and 27.7 for O3 (micrograms per cubic meter). 
Table 2 also presents results from two spa-
tial analyses: distance from city center (the 
Vancouver courthouse) and spatial length scale 
for variability. The former analysis reports the 
median distance between each postal code and 
downtown Vancouver, stratifying postal codes 
by tertile of walkability, NO, or O3. The lat-
ter analysis measures the change in location 
needed to observe a modest change, in this 
case, one-half of the overall spatial SD in each 
parameter (Marshall 2008).

Suburbs and exurbs tend to have high 
concentrations of O3, yet low levels of 
NO and walkability. The reverse holds for 

downtown areas. Those findings are expected: 
walkability parameters in Equation 1 are 
higher downtown than in the suburbs [see 
Supplemental Material, Figure 1, available 
online (doi:10.1289/ehp.0900595.S1 via 
http://dx.doi.org/)], and NO concentrations 
are elevated near the high density of vehicle 
emissions downtown. In contrast, O3 is a sec-
ondary pollutant formed from chemical reac-
tions of nitrogen oxides (NOx) and volatile 
organic compounds (VOCs) in the presence 
of sunlight; as O3 forms, air migrates. In addi-
tion, NO reacts with and removes (“titrates”) 
O3, thereby reducing O3 concentrations 
where traffic emissions (and NO concentra-
tions) are high.

Figure 1. Maps of walkability (A) and pollutant concentrations of (B ) NO and (C ) O3, (D) “Sweet-spot” and “sour-spot” postal codes based on tertiles.
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Table 2. Summary of walkability and air pollution results.
Measure Walkability NO O3

Mean ± SD (median)a 0.33 ± 3.34 (–0.59) 32.1 ± 14.6 (27.9) 27.7 ± 4.78 (28.7)
Interquartile rangea –1.96 to 2.35 23.6 to 35.6 23.8 to 30.5
Median distance from city centerb (km), by tertilec

Lower 23 (25) 19 (22) 5.2 (7.4)
Middle 17 (21) 17 (19) 17 (20)
Upper 7.0 (6.7) 11 (8.9) 25 (27)

Length scale of spatial variabilityd (km) 1.5 0.4 7.9
aUnits for NO and O3 concentrations are µg/m3; walkability is unitless. bValues are for all postal codes (values in paren-
theses are for postal codes in the southeast quadrant from city center only; avoids ocean and mountains). cRefers to 
postal codes in the given tertile for each parameter. dFor each parameter (walkability, NO, or O3), the distance at which 
the average parameter difference between two postal codes is equal to half of the overall spatial standard deviation for 
the parameter (Marshall et al. 2008).
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NO has a relatively short length scale 
(0.4 km), which indicates high spatial hetero
geneity: changing location by a small distance 
can yield a comparatively large change in NO 
concentration. O3 has a longer length scale 
(8 km) because it is a regional pollutant and 
because estimations are derived from spatial 
interpolation of the monitoring data. The 
length scale for walkability is between that for 
NO and O3. Length scales (kilometers) for the 
Equation 1 Z-scores vary significantly (and are 
between the NO and the O3 length scales): 
ZD, 5.6; ZI, 0.8; ZR, 4.8; ZM, 0.6. Variability 
among length scales highlights the possibility 
that certain areas might avoid high pollution 
levels yet have moderate or high walkability.

Figure 2 presents average values for param-
eters as a function of distance from downtown. 
Walkability and NO levels decline sharply in 
the first 6 km from downtown, whereas O3 
increases consistently along the urban-to-rural 
gradient. The high walkability area 16–19 km 
from downtown represents older satellite cities 
(e.g., New Westminster). The slight increase in 
walkability approximately 4 km from down-
town derives from increases in intersection 
density. Importantly, locations approximately 
4–8 km from downtown avoid the peak con-
centrations of NO and O3, yet they still have 
above-average walkability levels.

A plot analogous to Figure 2, but for 
the Equation 1 Z-scores [see Supplemental 
Material, Figure 1(doi:10.1289/ehp.0900595.
S1)], reveals that intersection density has an 
overall maximum approximately 5 km from 
downtown and a local maximum approxi-
mately 18 km from downtown (which 
causes the walkability increase at 16–19 km 
in Figure 2). In contrast, for the remaining 
three Z-scores (net residential density, retail 
floor area ratio, land-use mix), values are 
high downtown, decline rapidly for the first 
5–10 km, and then are relatively constant 
(roughly between 0 and –0.5) for distances 
> 10 km from downtown.

Among the Equation 1 Z-scores, NO 
concentrations are most correlated with resi-
dential density (Pearson r = 0.53) and least 
correlated with intersection density (r = 0.24). 
This finding suggests that “cars follow people, 
not roads”: neighborhoods with moderate 
or low residential density may avoid traffic 
exhaust yet still offer high intersection density 
(thereby improving walkability). Consistent 
with Figure 1, walkability is correlated with 
NO concentrations (r = 0.49) and inversely 
correlated with O3 concentrations (r = –0.70). 
The Supplemental Material contains addi-
tional pairwise comparisons and statistical 
models of the three attributes (walkability, 
NO, and O3), as well as correlations between 
those attributes and traffic counts [mod-
eled peak morning traffic—automobile and 
truck—within several radii, 100–1,000 m, 

of each postal code centroid (Henderson 
et al. 2007)]. As expected, traffic is corre-
lated with NO (r = 0.37–0.68) and walkabil-
ity (r = 0.18–0.64) and inversely correlated 
with O3 (r = –0.14 to –0.59); correlations 
are larger in magnitude for automobile traffic 
than for truck traffic and for larger radii than 
for smaller radii. Among Equation 1 Z-scores, 
traffic is least correlated with intersection den-
sity and most correlated with residential den-
sity (automobile traffic) and land-use mixing 
(truck traffic).

Figure 3 presents distributions of postal 
codes by walkability and pollution tertile. 
Fewer than 4% of postal codes have high 
walkability yet low NO concentrations, 
whereas 24% of postal codes have high walk-
ability and low O3 concentrations. (If attri-
butes were uncorrelated, each entry in Figure 
3 would be 11%.) The proportion of postal 
codes with low walkability and low NO is 
6 times greater for highest-income than for 
lowest-income postal codes (22% vs. 4%). 
This finding is consistent with expectations, 
because on average neighborhoods are more 
affluent in suburbs than near the city center. 
Affluent postal codes tend to be less walk-
able and have lower NO; the reverse holds for 
poor postal codes.

Figure 3 also illustrates postal codes in the 
most and least desirable tertile for each attri-
bute: “Sweet-spot” postal codes are high walk-
ability, low pollution; “sour-spot” postal codes 
are the opposite (low walkability, high pollu-
tion). We visited several sweet-spot neighbor-
hoods. Our informal examination indicated 

urban-form attributes consistent with results 
presented above: high street connectivity, 
mixed land uses nearby, absence of large park-
ing lots near retail space, sidewalks, and, in 
general, active streets with many walkers.

Table 3 presents distributions of postal 
codes by income for specific walkability and 
pollution tertiles. Although NO and walk-
ability values follow relatively monotonic 
patterns with income, O3 does not. High 
O3 occurs most commonly for middle- and 
upper-middle income postal codes, and low 
O3 occurs most commonly for lowest and 
highest income postal codes.

The prevalences of overall sweet- and 
sour-spot postal codes in Table 3 are 1.7% 
and 4.6%, respectively. [If the attributes were 
uncorrelated, the prevalence would be 3.7% 
(i.e., 3–3).] Sweet-spot postal codes are heavily 
skewed toward high incomes (68% are high-
est income, QAIPPE = 5; only 3% are lowest 
income, QAIPPE = 1) and tend to be near 
but not at the city center (mean ± SD distance 
from city center, 6 ± 1 km). Sour-spot postal 
codes are predominantly from the middle 
three income quintiles and tend to be spread 
far from the city center (mean ± SD distance 
from city center, r = 22 ± 11 km).

For postal codes with high walkability, we 
compared Equation 1 Z-scores for low pollu-
tion versus not low pollution and found that 
the former group has a higher average score 
for ZR (1.7 vs. 1.0) and lower scores for the 
three other parameters (ZI, 0.7 vs. 1.1; ZM, 
0.5 vs. 0.9; ZD, –0.3 vs. 0.3). Thus, what sepa-
rates sweet-spot postal codes from other highly 

Figure 2. Mean value for three parameters as a function of distance from city center (Vancouver court-
house). To avoid oceans and mountains, only postal codes in the quadrant southeast of the city center are 
included.
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walkable postal codes is proximity to shops 
with limited parking per retail floor area.

As discussed below, we investigated dif-
ferences in air pollution and walkability for 
neighborhoods near versus not near mass tran-
sit by comparing attributes for postal codes 
inside and outside of 0.25-, 0.5-, and 1-mile 
circular buffers around light-rail (SkyTrain) 
stations. On average, the near-station postal 
codes tend to have higher walkability [mean 
difference (unitless) ± SD, 3 ± 1], higher NO 
(30–40%), and lower O3 (10%) than do areas 
not near rail stations. The difference in walk-
ability is mainly attributable to differences in 
net residential density and land-use mixing.

Discussion
We explored urban spatial patterns for three 
environmental health attributes (walkability; 
NO, a primary pollutant with high concen-
trations near traffic and other combustion 
sources; and, O3, a secondary pollutant). Our 
results help elucidate spatial variations in 
community design, exposure to air pollution, 
and income. The methods presented provide 
new planning tools that can help identify 
where increased levels of physical activity may 
occur because of higher levels of walkability 
and where traffic emissions and O3 are least 
and most heavily concentrated. Walkability 
and air pollution have independently been 

associated with several adverse health out-
comes, including physical inactivity, heart dis-
ease, mortality, and atherosclerosis, but health 
studies have not yet investigated interactive or 
joint effects. Our investigation builds on pre-
vious research and highlights the complexities 
of built environment and health relationships.

We observed spatial differences among the 
three attributes. On average, conditions are 
better in the urban core than in the suburbs 
for O3 and walkability; the opposite is true 
for NO. We further identified neighborhoods 
that had reasonable levels for walkability and 
pollution. Sweet-spot locations, representing 
less than 2% of postal codes, are concentrated 
near but not at the city center. Most of them 
are higher income, indicating that they are 
highly desirable locations. In contrast, sour-
spot postal codes are far from the city cen-
ter, are spread more widely, and are occupied 
mostly by middle-income groups, although 
the degree of income segregation is less than 
for the sweet spots. Our finding that income 
is correlated with O3 concentrations but is 
inversely correlated with primary pollutant 
(NO) concentrations is consistent with simi-
lar findings in Southern California (Marshall 
2008; Marshall et al. 2006; Morello-Frosch 
et al. 2001, 2002). Our results add to the 
literature on environmental justice aspects 
of air pollution (Brulle and Pellow 2006; 

O’Neill et al. 2003), including on exposure to 
traffic-related pollution (Buzzelli and Jerrett 
2007; Havard et  al. 2009; Houston et  al. 
2008; Kingham et al. 2007). Results in North 
America suggest that for NO and other pri-
mary pollutants, low-income and nonwhite 
populations face a disproportionate share of 
the burden of urban air pollution.

Length-scale calculations highlighted that 
the aspects of the built environment stud-
ied here exhibit differing spatial patterns. For 
example, intersection density is a somewhat 
local attribute (shorter length scale), whereas 
retail floor area ratio is more regional. These 
age findings are important for several reasons. 
They suggest that when considering multiple 
attributes of the built environment, analysts 
may be able to identify areas trading off one 
attribute for the other, as well as sweet- and 
sour-spot locations. This attribute is useful 
for policy evaluation and for identifying loca-
tions meriting further investigation. In addi-
tion, people travel a finite distance each day. 
[In one study, which was not conducted in 
Vancouver, researchers found that the typi-
cal daily maximum distance from home is 
approximately 5 km (Marshall et al. 2006).] 
During each travel day, individuals may expe-
rience a wider range of values for some aspects 
of the built environment than for others. For 
example, based on the length-scale results pre-
sented above, an individual willing to walk 
2 km is likely to reach locations with differ-
ent levels of land-use mixing but with similar 
retail floor area ratios.

Policies designed to improve one attribute 
may hinder other attributes. For instance, mod-
est reductions in NO emissions can increase 
O3 locally (because NO titrates O3) and either 
increase or decrease O3 regionally (depending 
on whether O3 chemistry is limited by NOx or 
VOCs). In areas with low walkability, people 
often have high levels of driving and of vehi-
cle emissions per person (Frank et al. 2000, 
2006; Frumkin et al. 2004), but if activities 
and emissions are dispersed, then concentra-
tions of vehicle emissions may be low (Marshall 
et al. 2005). Conversely, walkable neighbor-
hoods may exhibit reduced per-capita vehicle 
use and emissions (Frank and Engelke 2005; 
Frank et al. 2000, 2006) yet elevated traffic 
congestion, emissions, and concentrations if 
activities are highly concentrated. Ideally, one 
would understand all important impacts before 
recommending a policy action such as alter-
native growth patterns or transportation invest-
ments. Our research highlights that high NO 
exposures may occur where physical activity is 
encouraged through active transportation and 
in low-income areas. More work is needed to 
understand how to avoid that outcome, espe-
cially for susceptible subpopulations such as 
youth and the elderly. Policy options include 
siting residential buildings (especially schools, 

Figure 3. Percentage of postal codes in each walkability and pollution tertile. For example, low walkabil-
ity and low ozone is found in 0.5% of low-income postal codes and in 10% of high-income postal codes. 
Values in each panel total 100%.
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daycare centers, and assisted living facilities) 
back from major transportation corridors, rules 
or incentives to reduce high-emitting vehicles 
in urban centers, indoor air cleaners, and high-
rise buildings that distance inhabitants from 
ground-level pollution. Shifts in the built envi-
ronment can provide an intervention strategy 
for improving environmental health. Policies 
that provide affordable housing in walkable 
areas with cleaner air can help to offset the 
trend of low-income households experienc-
ing worse than average primary air pollution; 
access to employment and other opportunities 
is an important aspect of overcoming disadvan-
tages faced by traditionally underserved groups. 
Our approach would allow policy makers to 
evaluate and spatially optimize changes to the 
built environment that would yield the greatest 
health benefit per dollar.

Walkable neighborhoods (and also neigh-
borhoods served by mass transit) may allow 
people to reduce their daily travel distance, 
thereby decreasing vehicle emissions of NO 
and other O3 precursors. Improving air pol-
lution and walkability will require changes in 
technologies, such as reducing emissions from 
motor vehicles, and also in urban design (e.g., 
land use mixing, mass transit).

Our results presented above indicate that 
near-transit neighborhoods are more walk-
able, have lower O3 concentrations, and have 
somewhat higher (30–40%) NO concen-
trations than do other neighborhoods. The 
influence of building configuration on air pol-
lution, although not directly explored here, 
may be an important aspect of this compari-
son. The increased density near rail stations 
is often accommodated via taller buildings. 
High-rise buildings elevate occupants above 
ground-level emissions. For primary pollut-
ants, concentrations aloft (> 10–25 m, or 
three to five stories; Zhou and Levy 2008) 
can be several times lower than at ground 
level (Väkevä et al. 1999; Zoumakis 1995), 
which could more than compensate for the 
30–40% ground-level NO concentration dif-
ference identified here. However, the urban 
street canyons formed by tall buildings reduce 

dilution rates and increase near-ground NO 
concentrations (Chan et al. 2002, 2003; Zhou 
and Levy 2008). In contrast, because of O3 
titration by ground-level NO emissions in 
downtown areas, O3 concentrations are often 
greater aloft than at ground level (Baik et al. 
2007; Costabile and Allegrini 2007; Garmory 
et al. 2009; Wöhrnschimmel et al. 2006).

Additional limitations of the present study 
include the following: the walkability measure 
lacks data on sidewalks and parks; O3 concen-
tration estimates do not include on-roadway 
O3 titration by NO; and, although the walk-
ability score has been correlated with actual 
walking levels in several other cities, we have 
not yet completed that research in Vancouver 
(excluding our informal field examinations). 
Although this study focuses on neighborhood 
design (i.e., urban form; see Equation 1) 
(Rodriguez and Joo 2004) as a predictor of 
walking levels (e.g., trip frequency, duration, 
or distance; percentage of people walking 
more than a threshold), other factors are also 
important, including, weather, topography, 
crime, pedestrian safety, noise, pollution, and 
personal preferences (Bagley and Mokhtarian 
2002; Frank et al. 2007). Similarly, several 
factors affect the relationship between urban 
layout and pollutant emissions and concen-
trations. Limitations in extrapolating from 
our results to other situations include that 
other pollutants may not track spatially 
with NO and O3. Unique characteristics of 
Vancouver include the following: Vancouver 
is in a coastal air shed bounded by mountains, 
winds are predominantly from ocean to land, 
and walkability is relatively high when com-
pared with other North American cities. In 
this study, we evaluated spatial variability, but 
future research is needed that considers tem-
poral variability such as diurnal, weekly, and 
seasonal variations in NO and O3 concentra-
tions and walkability and changes over time 
in urban form. Future research could address 
these limitations, investigate ways to target 
or optimize built-environment interventions, 
and document changes over time or measure 
the effectiveness of specific policies or actions. 

Other research could also include data on 
actual physical activity levels and pollutant 
exposures across urban form and address the 
health trade-offs between exposure to air pol-
lution and physical activity for different age 
and income groups. Comparative research 
that documents the disparities in air-pollution 
exposure and walkability across income 
groups, while also identifying and testing 
strategies for improvement, is needed. Finally, 
an important next step toward maximizing 
the ability of urban form to impact health 
is the development and refinement of trip-
planning tools that incorporate the various 
health-related attributes to allow individu-
als to reduce exposures during travel. Cycle 
Vancouver (2007) offers a first step toward 
this type of tool.

Conclusion
Our investigation explores potential envi-
ronmental health impacts of neighborhood 
design. We found that neighborhoods with 
high walkability tend to have high levels of 
primary traffic-related pollution (NO) but 
low concentrations of O3. Attributes of the 
built environment evaluated here have differ-
ing spatial patterns, but all exhibit an urban–
rural gradient. High-walkability and high-NO 
neighborhoods tend to be low-income neigh-
borhood, whereas neighborhoods with high 
O3 tend to be middle income. Neighborhoods 
that exhibit low pollution and high walkabil-
ity are rare and tend to be high income and 
located near to but not at the city center. 
Neighborhoods with high pollution and low 
walkability are far from the city center.

The environmental attributes we stud-
ied are associated with several adverse health 
outcomes. The results emphasize that various 
aspects of environmental quality exhibit dif-
fering spatial patterns. Our analyses could 
usefully be applied to other cities, employed 
to track changes over time resulting from 
urban development and redevelopment, or 
used to design areas that are low in pollution 
exposure and that promote physical activity 
through increased walkability.

Table 3. Pollution and walkability (W) tertiles: prevalence, by income quintile and average distance from city center (Vancouver courthouse).

Measure

All postal 
codes  
(100%)

Low NO 
(33%)

Low O3 
(33%)

Low W 
(33%)

High NO 
(33%)

High O3 
(33%)

High W 
(33%)

Low NO, 
 high W 

(4%)

Low O3,  
high W 
(24%)

Low NO,  
low O3, high 

W (2%)

High NO,  
high O3, low W 

(5%)
Prevalence by income quintile (QAIPPE)

1 (low) 1.0 0.55 1.30 0.45 1.55 0.78 1.62 0.62 1.67 0.18 0.66
2 1.0 0.78 0.82 0.83 1.12 1.04 1.13 0.72 1.01 0.23 1.18
3 1.0 1.03 0.64 1.07 0.90 1.17 0.85 0.98 0.74 0.40 1.20
4 1.0 1.13 0.70 1.42 0.83 1.28 0.66 0.78 0.70 0.69 1.35
5 (high) 1.0 1.42 1.56 1.12 0.69 0.70 0.84 1.81 0.98 3.23 0.58

Average distance from city center 
Mean distance (km) 16 19 5.2 23 11 25 7.0 10 4.5 6.2 22
Coefficient of variability 70% 54% 42% 48% 89% 42% 84% 51% 45% 18% 48%

Values in each column present the relative prevalence of postal codes with that income quintile, normalized to 1.0 = prevalence in Metro Vancouver. For example, from the first column, 
lowest income postal codes are half (55%) as prevalent among low-NO postal codes as they are in Metro Vancouver, and highest income is 42% more common among low-NO postal 
codes than overall in Metro Vancouver. The column heading indicates percentage of the 49,702 Metro Vancouver postal codes represented by that column. For example, 33% of postal 
codes are in the low-NO tertile; 4% of postal codes are both low NO and high walkability.
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